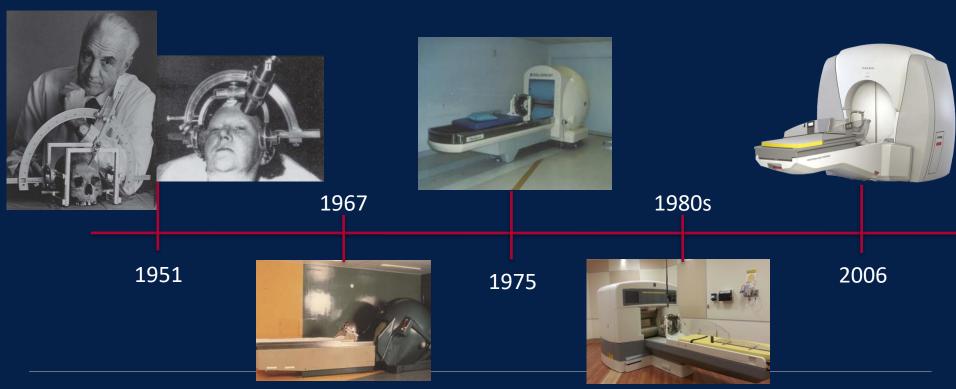


UCSF Health

Radiosurgery in the Multidisciplinary Management of Brain Metastases

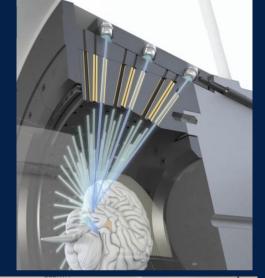
Emi Yoshida, MD UCSF Radiation Oncology UCSF-Washington Radiation Oncology Center


February 10, 2024


Brain Metastases Statistics

- Most common type of intracranial tumor
- 20-40% of patients with cancer will have brain metastases
- ~ 300,000 new cases of brain metastases in the United
 States each year
- With more effective systemic therapies leading to improved survival, the durable control of intracranial disease of increasing importance

History of SRS for Brain Metastases


Radiosurgery has changed the goals of treatment to long-term survival and quality of life

Current SRS

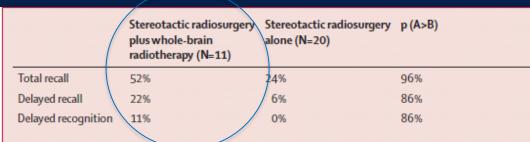
Treatment Strategies

What is the right treatment for a given patient?

Surgery benefits a select group of patients

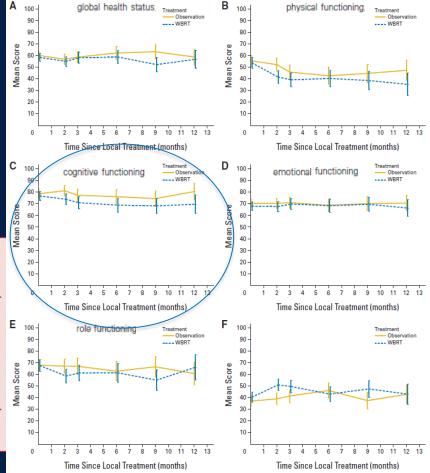
Trial	Journal/ Year	Treatment	Patients	Median Survival (weeks)	Functional Independence (wks)	P-value
Patchell	NEJM	WBRT+S	25	40	38	<.01
	1990	WBRT 36 Gy/12 fx	23	15	8	
Noordijk	IJROBP	WBRT+S	32	43	34	.04
	1994	WBRT 40 Gy/20 fx	31	26	21	
Mintz		WBRT+S	41	24		NS
	1996	WBRT 30 Gy/10 fx	43	27		0.24
RTOG/ Am J Clin SWOG* Oncol 1990	WBRT+S	25	62		<.01	
	Oncol 1990	WBRT 4000 cGy /16 fx + 1000 cGy boost	55	27		

Radiation should be delivered to reduce local recurrence


Phase III surgery +/- WBRT failure patterns and survival (Patchell JAMA 1998)

Failure	Surgery	S + WBRT	P-value
Anywhere in CNS	32/46 (70%)	9/49 (18%)	<.001
Local	21/46 (46%)	5/49 (10%)	<.001
CNS Death	17/39 (44%)	6/43 (14%)	.003
Median Survival	43 weeks	48 weeks	.39

The addition of WBRT lowers all recurrences and CNS deaths, but does not impact on survival


The addition of WBRT to surgery / SRS:

- Reduces rate of intracranial progression
- Does not improve overall survival
- Increases rate of neurocognitive decline

p (A>B)=Bayesian probability that the proportion with a significant neurocognitive worsening is higher in stereotactic radiosurgery plus whole-brain radiotherapy than stereotactic radiosurgery alone.

Table 3: Bayesian posterior mean probability of significant neurocognitive decline at 4 months by treatment group, by HopkinsVerbal Learning Test—Revised

Despite worse surgical bed control, post-op SRS associated with equivalent survival, better QOL, and less toxicity, compared to post-op WBRT

Phase III Postoperative SRS vs. WBRT (Brown, et al. Lancet Oncol 2017)

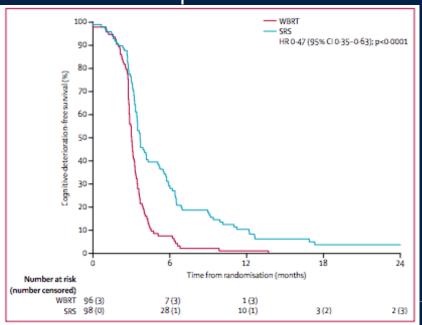


Figure 2: Cognitive-deterioration-free survival WBRT=whole brain radiotherapy. SRS=stereotactic radiosurgery

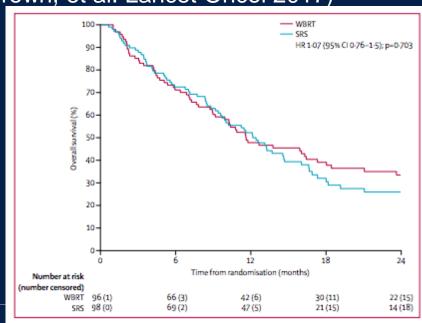
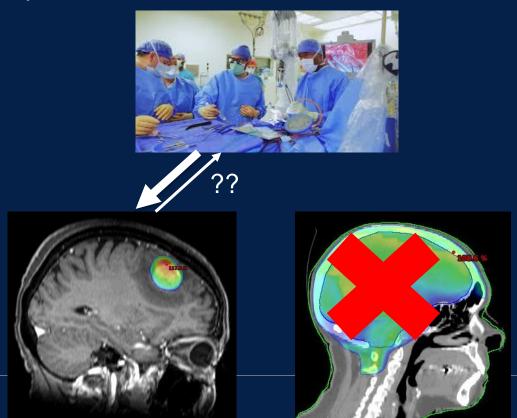



Figure 3: Overall survival WBRT=whole brain radiotherapy. SRS=stereotactic radiosurgery.

Post-op SRS for patients with resected brain metastases is a standard of care

Pre-operative SRS is safe and effective with excellent local control

A New Treatment Paradigm: Neoadjuvant Radiosurgery Before Surgical Resection of Brain Metastases With Analysis of Local Tumor Recurrence

Anthony L. Asher, MD,**, Stuart H. Burri, MD, Walter F. Wiggins, PhD,

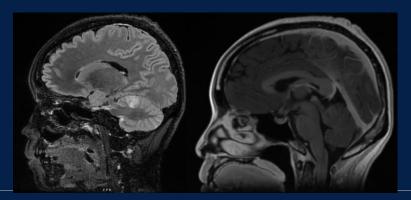
Renee P. Kelly H. James Nort		Six months	Twelve months	Twenty four months	BSN, [§]
	Actuarial Overall Survival	77.8%	60.0%	26.9%	
	Actuarial Local Control	97.8%	85.6%	71.8%	

UCSF Health

Pre-op versus Post-op SRS

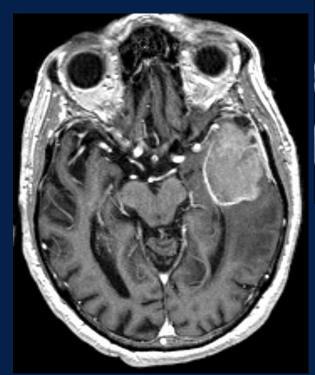
- 180 patients with surgical resection of 189 brain metastases.
 - 66 pre-SRS (36.7%)
 - 114 post-SRS (63.3%)
- MVA suggested <u>no difference in</u>:
 - Overall survival (HR 0.74, P=0.10)
 - Local recurrence (HR 1.55, P=0.24)
 - Distant brain recurrence (HR 1.8, P=0.75)

- Post-SRS was associated with higher rates of:
 - Leptomeningeal disease (2 years: 16.6% vs. 3.2%, P=0.01)
 - Symptomatic radiation necrosis (2 years: 16.4% vs. 4.9%, P=0.01)

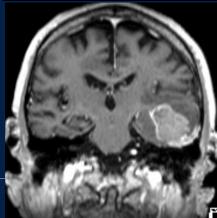

Leptomeningeal Disease

Poor prognosis

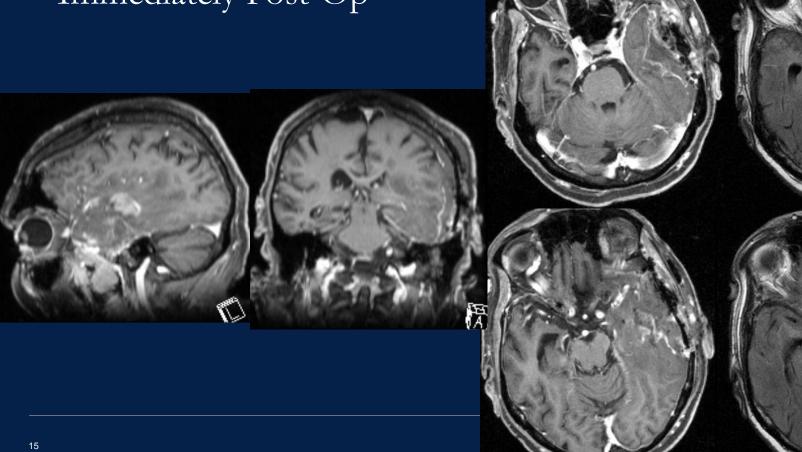
- Patients who develop postresection (nodular) LMD have a median survival of 5.4 months.
- Patients with classical LMD have a median survival of 3.3 months.

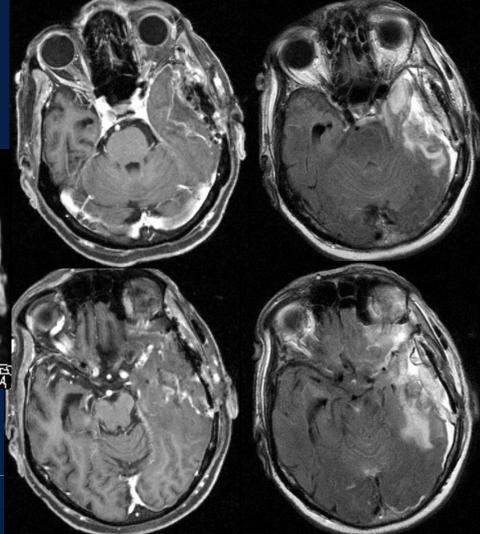

Impact

The risk of LMD is as high as 30% in patients with breast cancer who normally have the longest expected survival with brain metastases.

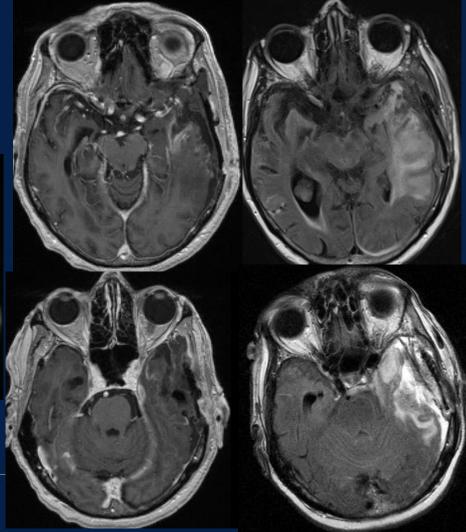


Patient with newly diagnosed brain metastasis








Immediately Post-Op



Post-op Day 8

Radiation Treatment Plan

A Phase 1 Dose Escalation Trial of Neoadjuvant Radiosurgery for the Treatment of Metastatic Brain Tumors

Primary Objective:

 To determine the maximum tolerated dose (MTD) of radiation given prior to neurosurgery in subjects with brain metastases.

Hypothesis:

 The MTD will be dependent upon target size and will be similar to those established on RTOG 90-05.

Tumor Diameter	Maximum Tolerated Dose
≤ 2 cm	Stopped at 24 Gy
2-3 cm	18 Gy
3-4 cm	15 Gy

Study Design

SRS was performed prior to resection of the indexed brain metastasis. The dose of radiation administered to the indexed lesion was

established as a function of tumor size:

Greatest Dimension	Initial Dose
≤ 2 cm	20 Gy
2-3 cm	14 Gy
3- cm	13 Gy

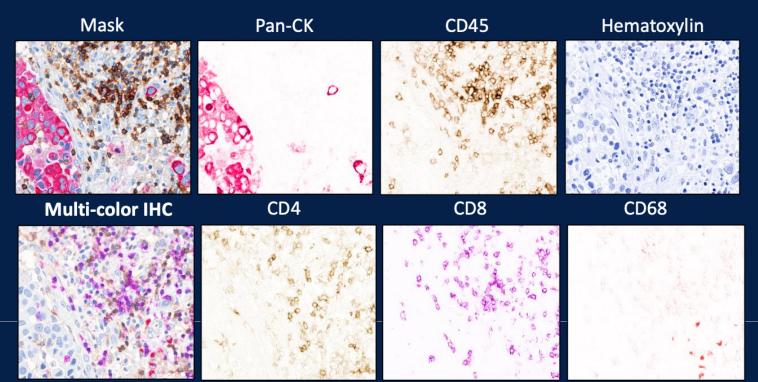
Prescription dose will be per Escalation With Over Dose Control (EWOC) statistical determination:

- •Tumors ≤2.0 cm: 20 Gy to 24 Gy
- •Tumors 2.1-3.0 cm: 14 Gy to 18 Gy
- •Tumors 3.1-4.0 mm: 13 Gy to 15 Gy

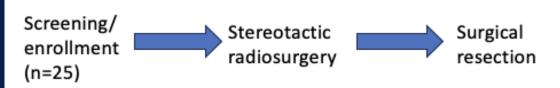
A Phase 1 Dose Escalation Trial of Neoadjuvant Radiosurgery for the Treatment of Metastatic Brain Tumors

Secondary Objective

 To describe preliminary rates of image-complete resection, local tumor control, intracranial control, progression-free survival, leptomeningeal spread, and radiation necrosis.


Hypothesis

 Pre-operative SRS will have similar rates of image-complete resection, local tumor control, intracranial control, and PFS as historical controls, with lower rates of leptomeningeal spread and radiation necrosis.



Exploratory Objective

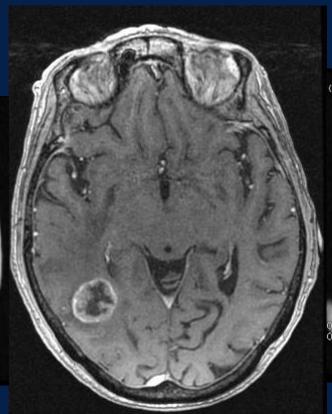
 To characterize the immune response to radiation within metastatic brain lesions and identify associated biomarkers (analysis of the immune composition and signaling using multiplex flow cytometry, cytokine arrays and immunohistochemistry)

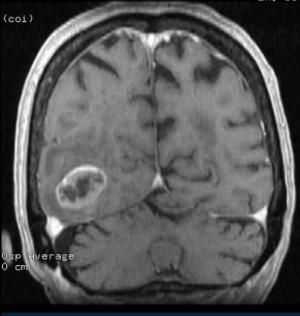
UCSF Health

- DLT evaluation: 30-day window post surgery
- Follow up evaluation: physical exam, MRI, labs every 3 months for 1 year

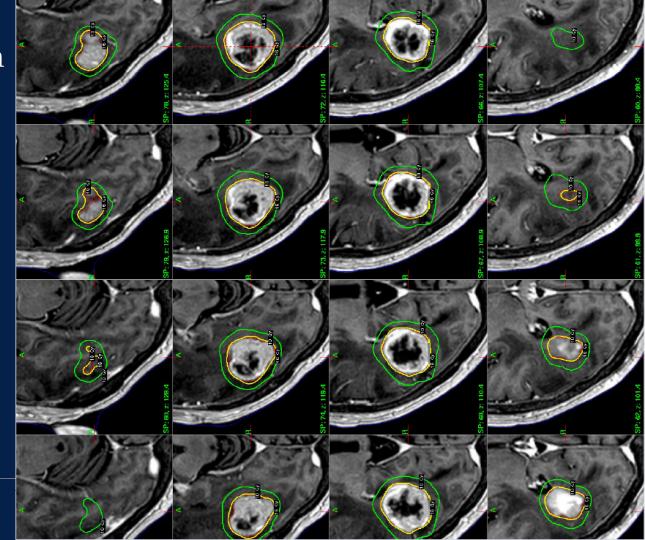
Tumor Diameter	Maximum Tolerated Dose
≤ 2 cm	Stopped at 24 Gy (no MTD)
2-3 cm	Stopped at 18 Gy (no MTD)
3-4 cm	Stopped at 15 Gy (no MTD)

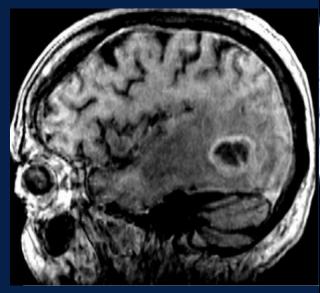

Clinical characteristics (n=25)	
Characteristic	No. (%)
Age, median (range, years)	65 (30-79)
Sex	
Female	15 (60%)
Male	10 (40%)
Karnofsky Performance Status	
100	2 (8%)
90	16 (64%)
80	5 (20%)
70	2 (8%)
Index lesion size, median (range, cm)	2.3 (1.2-4)
Index lesion location	
Frontal	5 (20%)
Parietal	8 (32%)
Temporal	2 (8%)
Occipital	5 (20%)
Cerebellum	5 (20%)
Primary histology	
NSCLC	9 (36%)
Gynecologic	4 (16%)
Breast	3 (12%)
Genitourinary (renal cell, bladder)	3 (12%)
Gastrointestinal (rectum, pancreas)	2 (8%)
Melanoma	2 (8%)
Thyroid	1 (4%)
Other*	1 (4%)
Number of brain metastases	
1	17 (68%)
2	4 (16%)
3	2 (8%)
4	2 (8%)
Extent of surgery	
Radiographic gross total	23 (92%)
Partial	2 (8%)

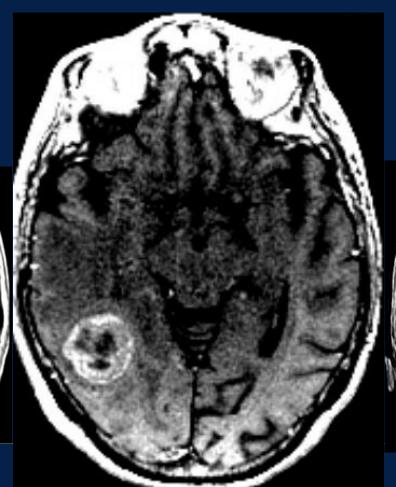

Outcomes

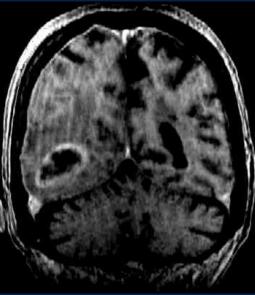

Tumor size	# of patients	Dose levels
≤2cm	9	20Gy – 4 23Gy - 2 24Gy - 3
2.1-3	12	14Gy - 1 15Gy - 1 16Gy - 1 18Gy - 3 19Gy - 2 20Gy - 1 21Gy - 1 23Gy - 2
3.1-4	4	13Gy - 1 15Gy - 2 17Gy - 1 18Gy - 1

- Median 2 days between SRS and surgery (range 1-8)
- Safety
 - No DLTs
- Crude rates
 - Mortality 15/25
 - Local recurrence of index lesion 2/25
 - Distant brain failure 13/25
 - Leptomeningeal disease 1/25
 - Radiation necrosis 3/25


91 yo F with h/o recurrent melanoma and new lesion found on MRI brain

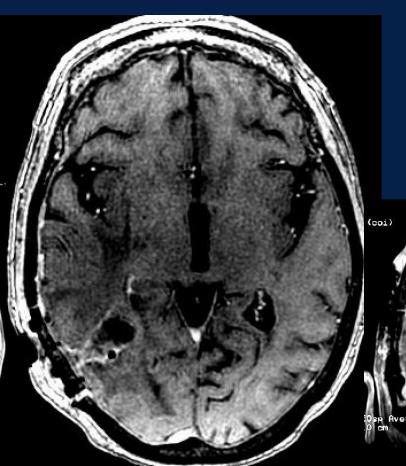





Radiosurgery plan 16 Gy x 1

Post SRS





UC_{SF} Health

Post-op

Image-complete resection

NRG BN012

A Randomized Phase III Trial of Pre-Operative Compared to Post-Operative Stereotactic Radiosurgery in Patients With Resectable Brain Metastases

Study Schema

Radiographic confirmation of surgical/stereotactic radiosurgery (SRS) candidates with 1-4 brain metastases, one of which requires resection

STRATIFY

- · lesion number (1 versus 2-4)
- breast cancer histology (yes versus no)
- posterior fossa resection (yes versus no)
- targeted or immunotherapy within 4 weeks prior to registration or planned for within 8 weeks after surgery (yes versus no)

RANDOMIZATION*

Arm 1: Post-resection SRS

Surgery

Post-resection SRS to the resection cavity (12 to 20 Gy in a single fraction)
within 10-30 days after resection

Randomization is 1:1

ARM 2: Pre-resection SRS

Primary Objective(s)

• To determine if the time to composite adverse endpoint (CAE) [defined as:1) local tumor progression within the surgical bed; and/or 2) adverse radiation effect (ARE), the imaging correlate of post-SRS radiation necrosis; and/or 3) nodular meningeal disease (nMD)] is improved in patients treated with pre-resection SRS to the intact lesion versus those treated with post-resection SRS.

Secondary Objective(s)

- To assess the trajectory of symptom burden in patients treated with pre-resection SRS
 to the intact lesion versus those treated to the post-resection surgical cavity as
 measured by MD Anderson Symptom Inventory for brain tumor (MDASI-BT).
- To determine whether there is improved overall survival (OS) in patients with resected brain metastases who undergo pre-resection SRS compared to patients who receive post-resection SRS.
- To compare rates of ARE, the imaging correlate of radiation necrosis, in patients who receive pre-resection SRS to patients who receive post-resection SRS.
- To determine whether there is increased time to whole brain radiotherapy (WBRT) in patients who receive pre-resection SRS compared to patients who receive postresection SRS.
- To assess the trajectory of neuro-cognitive function in patients treated with preresection SRS to the intact lesion versus those treated to the post-resection surgical cavity as measured by the Montreal Cognitive Assessment (MoCA).
- To compare rates of nodular meningeal disease in patients who receive pre-resection SRS to patients who receive post-resection SRS.
- To compare rates of local recurrence in the resection cavity for patients who receive pre-resection SRS to patients who receive post-resection SRS.
- To compare rates of local recurrence of intact, non-index metastases treated with SRS.
- To compare rates of distant brain failure in patients who receive pre-resection SRS to patients who receive post-resection SRS.
- To assess toxicity in the two treatment arms.

Thank You

emi.yoshida@ucsf.edu