Direct convective delivery for nervous system gene therapy

Russell R. Lonser, M.D. Ohio State University Department of Neurological Surgery Columbus, Ohio

Gene therapy

Gene therapy is based on viral vector carriers of therapeutic gene

Nervous system clinical trials

Gene therapy clinical trials are growing at an exponential rate **Clinical Trials**

Year

Gene therapy trials

80% of nervous system gene therapy trials have met efficacy end points Gene Therapy

www.nature.com/gt

ARTICLE

Changing trends in the development of AAV-based therapies: a meta-analysis of past and present therapies

Route of Administration	Distribution	Advantages	Limitations
Systemic	Widespread (systemic)	Non-invasive Systemic impact	Blood-brain barrier Non-targeted coverage (off-target effects) Immune response
Intrathecal/Intraventricular	Widespread (nervous system)	Minimally invasive Widespread nervous system impact	Blood-ependymal barrier Non-targeted coverage (off-target effects) Immune response
Direct convective delivery	Limited (perfused area)	Targeted Selective manipulation of disease neuronal circuits and treatment regions Bypasses blood-brain barrier	Most invasive (placement of infusion cannula in nervous system) Requires significant infrastructure

Route of Administration	Distribution	Advantages	Limitations
Systemic	Widespread (systemic)	 Non-invasive Systemic impact 	 Blood-brain barrier Non-targeted coverage (off-target effects) Immune response
Intrathecal/Intraventricular	Widespread (nervous system)	 Minimally invasive Widespread nervous system impact 	 Blood-ependymal barrier Non-targeted coverage (off-target effects) Immune response
Direct convective delivery	Limited (perfused area)	 Targeted Selective manipulation of disease neuronal circuits and treatment regions Bypasses blood-brain barrier 	 Most invasive (placement of infusion cannula in nervous system) Requires significant infrastructure

Route of Administration	Distribution	Advantages	Limitations
Systemic	Widespread (systemic)	 Non-invasive Systemic impact 	 Blood-brain barrier Non-targeted coverage (off-target effects) Immune response
Intrathecal/Intraventricular	Widespread (nervous system)	 Minimally invasive Widespread nervous system impact 	 Blood-ependymal barrier Non-targeted coverage (off-target effects) Immune response
Direct convective delivery	Limited (perfused area)	 Targeted Selective manipulation of disease neuronal circuits and treatment regions Bypasses blood-brain barrier 	 Most invasive (placement of infusion cannula in nervous system) Requires significant infrastructure

Route of Administration	Distribution	Advantages	\$	Limitations
Systemic	Widespread (systemic)	Non-invasiveSystemic imp	act	Blood-brain barrier Non-targeted coverage (off-target effects) Immune response
Intrathecal/Intraventricular	Widespread (nervous system)	 Minimally inv Widespread r system impact 	asive lervous ct	Blood-ependymal barrier Non-targeted coverage (off-target effects) Immune response
Direct convective delivery	Limited (perfused area)	 Targeted Selective manipulation disease neuro circuits and to regions Bypasses blo barrier 	of onal reatment od-brain	Most invasive (placement of infusion cannula in nervous system) Requires significant infrastructure

Routes of delivery

Most common route of gene distribution is direct convective delivery

Convective delivery

Edward H. Oldfield, M.D.

PNAS 1994

Convection-enhanced delivery of macromolecules in the brain

R. HUNT BOBO, DOUGLAS W. LASKE, AYTAC AKBASAK, PAUL F. MORRISON, ROBERT L. DEDRICK AND EDWARD H. OLDFIELD

Time (min)

Bypasses bloodbrain barrier

Uniform distribution

Reliable distribution

Linear relationship R² = 0.94 to 0.98

Volume of tissue distribution increases linearly with volume of infusion

Reliable distribution

Inversely proportional to the interstitial space available for solute distribution

Brain and Brainstem spinal cord

Vd:Vi Ratios

Clinically relevant volumes

Targeted delivery

Various regions of the nervous system can be targeted

JNS

2015

Convection-enhanced delivery to the central nervous system

Russell R. Lonser, MD,^{1,2} Malisa Sarntinoranont, PhD,³ Paul F. Morrison, PhD,⁴ and Edward H. Oldfield, MD^{2,5}

1998

Direct convective delivery of macromolecules to the spinal cord

RUSSELL R. LONSER, M.D., NITIN GOGATE, M.D., PAUL F. MORRISON, PH.D., J. DAVID WOOD, B.S., AND EDWARD H. OLDFIELD, M.D.

J<u>NS</u> 1998

Direct convective delivery of macromolecules to peripheral nerves

RUSSELL R. LONSER, M.D., ROBERT J. WEIL, M.D., PAUL F. MORRISON, PH.D., LANCE S. GOVERNALE, AND EDWARD H. OLDFIELD, M.D.

Targeted delivery

Less than 2 mm absolute error

Permits intraoperative MR-imaging during infusion

JNS

TECHNICAL NOTE

J Neurosurg 122:1173-1179, 2015

Accuracy of direct magnetic resonance imaging-guided placement of drug infusion cannulae

Prashant Chittiboina, MD,1 John D. Heiss, MD,1 and Russell R. Lonser, MD1.2

Vector transport and circuit targeting

Bibliogićor focal teratangestedi weidtespread tyanesport pistvibletsion in elbilitasteol target binganites from piercfuisteyclanegion regions

Vector characteristics

Viral Vector	Intravenous	Intramuscular	Cerebrospinal	Parenchymal	Cellular	Transport
			Fluid		Trophism	
Adeno-associated virus						
Serotype 1		Х			N, A, NN	Ret, Ant
Serotype 2		Х		Х	Ν	Ant
Serotype 2/6	Х				N, A	
Serotype 5				Х	N, A, NN	Ret, Ant
Serotype 6	Х	Х			N, A	Ret
Serotype 8	Х				N, A, NN	Ret, Ant
Serotype 9	Х		Х	Х	N, A, NN	Ret, Ant
Serotype rh74	Х	Х				
Serotype rh10				Х	N, A, NN	Ant
Lentivirus	X			Х	Α	Ret
Moloney leukemia virus				Х	N	
Herpes Simplex 1*	X			X	N, A, NN	Ret, Ant

N – neuron, A – astrocyte, NN – non-neuronal, Ret – retrograde; Ant – anterograde *Only current use is in neuro-oncology

R.R. Lonser et al., J Neurosurg, 2020

Real-time imaging of delivery

Co-infusion of surrogate tracer (Gd-DTPA) can be used to precisely define region of vector perfusion during real-time MRimaging

Imaging of vector delivery

Predicts transgene expression at site of infusion

Interventional MRI-guided Putaminal Delivery of AAV2-GDNF for a Planned Clinical Trial in Parkinson's Disease

R Mark Richardson¹, Adrian P Kells¹, Kathryn H Rosenbluth¹, Ernesto Aguilar Salegio¹, Massimo S Fiandaca¹, Paul S Larson¹, Philip A Starr¹, Alastair J Martin², Russell R Lonser³, Howard J Federoff^{4,5}, John R Forsayeth¹ and Krystof S Bankiewicz¹

Current clinical trials

Disorder	Putative Agent	Imaging Agent	Target
Parkinson's disease	AAV2-GDNF	Gd-DTPA	Putamen
Parkinson's disease	AAV2-AADC	Gd-DTPA	Putamen
AADC-deficiency	AAV2-AADC	Gd-DTPA	Brainstem
Multisystem Atrophy	AAV2-GDNF	Gd-DTPA	Putamen
Alzheimer's disease	AAV2-BDNF	Gd-DTPA	EC
Huntington's disease	AAV5-mRNA	Gd-DTPA	Putamen/Caudate
Malignant glioma	Various	Gd-DTPA	Tumor

Current clinical trials

Disorder	Putative Agent	Imaging Agent	Target
Parkinson's disease	AAV2-GDNF	Gd-DTPA	Putamen
Parkinson's disease	AAV2-AADC	Gd-DTPA	Putamen
AADC-deficiency	AAV2-AADC	Gd-DTPA	Brainstem
Multisystem Atrophy	AAV2-GDNF	Gd-DTPA	Putamen
Alzheimer's disease	AAV2-BDNF	Gd-DTPA	EC
Huntington's disease	AAV5-mRNA	Gd-DTPA	Putamen/Caudate
Malignant glioma	Various	Gd-DTPA	Tumor

Regenerative therapy

1993

GDNF: A Glial Cell Line–Derived Neurotrophic Factor for Midbrain Dopaminergic Neurons

Leu-Fen H. Lin, Daniel H. Doherty, Jack D. Lile, Susan Bektesh, Frank Collins*

mature medicine

2003

Direct brain infusion of glial cell line–derived neurotrophic factor in Parkinson disease

Steven S. Gill¹, Nikunj K. Patel¹, Gary R. Hotton², Karen O'Sullivan¹, Renée McCarter¹, Martin Bunnage¹, David J. Brooks², Clive N. Svendsen³ & Peter Heywood¹

Regenerative therapy

Preclinical studies

Anterograde transport of virus and regeneration

Functional Effects of AAV2-GDNF on the Dopaminergic Nigrostriatal Pathway in Parkinsonian Rhesus Monkeys

2009

Jamie L. Eberling, Adrian P. Kells, Philip Pivirotto, Janine Beyer, John Bringas, Howard J. Federoff, John Forsayeth and Krystof S. Bankiewicz

Axonal transport of AAV2-GDNF

Axonal trafficking is critical for therapeutic effects of AAV2-GDNF. Vector undergoes anterograde transport via striatonigral pathway.

Preclinical studies

Regeneration of the MPTP-Lesioned Dopaminergic System after Convection-Enhanced Delivery of AAV2-GDNF

Adrian P. Kells, Jamie Eberling, Xiaomin Su, Philip Pivirotto, John Bringas, Piotr Hadaczek, Wade C. Narrow, William J. Bowers, Howard J. Federoff, John Forsayethand Krystof S. Bankiewicz

Phase I trial

National Institute of Neurological Disorders and Stroke AAV2-GDNF vector delivered to bilateral putamina of Parkinson's disease patients (moderate to severe) via a transfrontal approach.

Four dose levels (co-infusion with gadolium-DTPA): Dose Cohort 1 (450 microliters; 3 x 10¹⁰ vg) Dose Cohort 2 (450 microliters; 1 x 10¹¹ vg) Dose Cohort 3 (450 microliters; 3 x 10¹¹ vg) Dose Cohort 4 (450 microliters; 7 x 10¹¹ vg)

Primary Objective:

- Determine the safety and feasibility of treatment Secondary Objectives:
 - TH-fiber regeneration expression using ¹⁸F-dopa PET
 - Assessments of motor function and quality of life
 - · Assessments of daily requirements for levodopa

Phase I trial

2019

Trial of Magnetic Resonance-Guided Putaminal Gene Therapy for Advanced Parkinson's Disease

Imaging results

Total perfused putamen

On average 22% of the total putamen volume was perfused

¹⁸F-Dopa PET imaging

Patients showed increase in F-Dopa uptake after treatment

¹⁸F-Dopa PET-Scanning

UPDRS Part 1 (mentation, mood, behavior)

UPDRS Part 2 (activities of daily life)

Patients remained stable

UPDRS Part 3 (motor function)

UPDRS Part 4 (Hoehn and Yahr)

(months)

(months)

Levodopa stable

Average Levodopa Dosing

Postmortem analysis

Informs biologic impact and early efficacy read out

Phase IB Trial

AAV₂-GDNF vector delivered to each Parkinson's disease patient (mild to moderate) via a posterior approach:

 Recently diagnosed (4 years or more) with mild motor symptoms (Prevention; n=6)
 More than 4 years since diagnosis with moderate motor symptoms (Restoration; n=4)

Primary Objective:

Determine the safety of treatment

Secondary Objectives:

- TH-fiber regeneration expression using ¹⁸F-dopa PET
- Assessments of motor function and quality of life
- Assessments of daily requirements for levodopa

Excellent putaminal coverage

Precise and reproducible delivery

Mean, putaminal coverage, 63%

Parkinson's disease motor scores

Parkinson's disease motor scores

Key points

- A Stability demonstrated over 12 months in Mild PD
- Limited window to measure large magnitude of functional improvements in the Mild PD
- C One outlier may represent potential risk of atypical PD when enrolling early-stage PD

Long-term follow up needed to assess modification of disease progression

Unified Parkinson's Disease Rating Scale (UPDRS) Part II – Participant-reported motor impacts on activities of daily living Part III – Investigator rating of motor function OFF or ON medication

Parkinson's disease motor scores

Moderate cohort

Part III OFF
Part III ON
Part II

Mean \pm SD (n=6)

Parkinson's disease motor scores

Moderate cohort

Key points

50% decrease in 'off' time 86% decrease in dyskinesia time 27% increase in 'on' time

PD, Parkinson disease.

*Data are averaged over 3 days and normalized to a 16-hour waking day. †Time ON without dyskinesia + time with non-troublesome dyskinesia.

Motor Performance in OFF State 5 Natural history data 0 Expected 12 mo 24 mo Bs 6 mo 18 mo placebo Change from Baseline UPDRS III score (points) **AAV-NTN Ph2** -5-Placebo (n=22) AAV-NTN Ph2 (n=23) -10-Α AAV2-GDNF В NHP (n=8) -15-C **AAV-GDNF Ph1b** Moderate cohort (n=4) -20-

AAV2-GDNF with **20%** L-dopa dose reduction; different from previous CGT studies

Key points

- 12-months clinical data shows stronger improvements than previous neurotrophic CGTs
- B AAV-GDNF effects are more progressive than previous CGTs:

Continuous improvement after 6 months, unlike brief improvement in other CGTs

Clinically meaningful improvements beyond 6months consistent with anticipated MoA – neuron regrowth and progressive restoration of dopamine function

Parkinson's disease motor scores

Dose Response of AAV2-GDNF in Phase I vs Phase I^B

Restorative therapy

Aromatic L-amino acid decarboxylase (AADC) deficiency

An ultrarare, inherited disorder that appears within the first year of life

nature _____

2021

Gene therapy for aromatic L-amino acid decarboxylase deficiency by MR-guided direct delivery of AAV2-AADC to midbrain dopaminergic neurons

Signs and symptoms

Developmental delay Global hypotonia Non-verbal

Involuntary limb movement

Debilitating oculogyric crises

Patients die in first or second decade of life

¹⁸F-Dopa PET imaging

Normal Control

AADC deficiency

Anterograde axonal transport

Convection-enhanced delivery of adeno-associated type virus type 2 (AAV2) into the striatum and transport of AAV2 within the monkey brain

Piotr Hadaczek, Malgorzata Kohutnicka, Michal T. Krauze, John Bringas, Phil Pivirotto, Janet Cunningham, and Krystof Bankiewicz

2006

Midbrain infusion of AAV2-AADC

Dopamine PathwaysSerotonin Pathways

Phase I Trial

Pediatric AADC deficiency

AAV2-AADC vector will be delivered to bilateral substantia nigra and ventral tegmentum.

2 dose levels will be employed: Dose Cohort 1 = 1.3 x 10¹¹ vg (160 microliters) Dose Cohort 2 = 8.3 x 10¹¹ vg (160 microliters)

Primary Objective:

Determine safety of the approach

Secondary Objectives:

Define clinical effects

Assess dopaminergic biologic changes with F-Dopa PET

Assess accuracy and feasibility of MR-guided infusion

Imaging results

All patients received 160 microliters

Mean coverage 98% substantia nigra 77% ventral tegmental area

Imaging results

MRI of Vector Infusion

Baseline FDOPA PET

3M post FDOPA PET

Baseline DaTscan

Baseline FDOPA PET

3M post FDOPA PET

Metabolic results

Downstream Dopamine Byproduct

Downstream Serotonin Byproduct Upstream Dopamine Precursor

Baseline before infusion

5 weeks post infusion

9 months post infusion

12 months after infusion

12 months post infusion

Motogsycocing impession and pratilentstieftes treatprease (75% reduction) with 3 months

Dyskinesias occurred in all patients after treatment and resolved within 24 months

Conclusions

Acknowledgements

Krystof Bankiewicz Jeffrey R. Leonard J. Bradley Elder John D. Heiss Toni Pearson Andrea Davis Kyle Wu